Comparing Predictive Machine Learning Models for Short- and Long-Term Urban Water Demand Forecasting in Milan, Italy
نویسندگان
چکیده
Urban water demand forecasting is essential for supply network optimization and management. In this case study, we comparatively investigate different state-of-the-art predictive models on short- (1 day-ahead) long-term (7 urban (UWD) the city of Milan, Italy. The contribution paper two-fold. First, compare performance time series machine learning daily UWD. tested include Autoregressive Integrated Moving Average (ARIMA) models, Artificial Neural Networks (ANN), Support Vector Regression (SVR), Light Gradient Boosting Machine (LightGBM), Long Short-Term Memory (LSTM) networks. Second, whether coupling a Wavelet Data-Driven Forecasting Framework (WDDFF) with these further improves capacity. Results show that, in general, WDDFF can improve model performance. LSTM coupled wavelet decomposition technique achieve high levels accuracy R2 larger than 0.9 both UWD forecasts. LightGBM efficiently reduce number predictors potential to forecast select important features hydrology resources field.
منابع مشابه
Long-Term Water Demand Forecasting
This chapter reviews existing long term water demand forecasting methodologies. Based on an extensive literature review, it shows that the domain has benefited from contributions by economists, engineers and system modelers, producing a wide range of tools, many of which have been tested and adopted by practitioners. It illustrates, via three detailed case studies in the USA, the UK and Austral...
متن کاملMachine Learning Models for Housing Prices Forecasting using Registration Data
This article has been compiled to identify the best model of housing price forecasting using machine learning methods with maximum accuracy and minimum error. Five important machine learning algorithms are used to predict housing prices, including Nearest Neighbor Regression Algorithm (KNNR), Support Vector Regression Algorithm (SVR), Random Forest Regression Algorithm (RFR), Extreme Gradient B...
متن کاملA short-term, pattern-based model for water-demand forecasting
Stefano Alvisi (corresponding author) Marco Franchini Dipartimento di Ingegneria, Università degli Studi di Ferrara, Ferrara 44100, Italy Tel.: +39 0532 97 4930 Fax: +39 0532 97 4870 E-mail: [email protected] Alberto Marinelli DISTART, Università degli Studi di Bologna, Bologna 40136, Italy The short-term, demand-forecasting model described in this paper forms the third constituent part of t...
متن کاملmachine learning for predictive management: short and long term prediction of phytoplankton biomass using genetic algorithm based recurrent neural networks
in the regulated nakdong river, algal proliferations are annually observed in some seasons, with cyanobacteria (microcystis aeruginosa) appearing in summer and diatom blooms (stephanodiscus hantzschii) in winter. this study aims to develop two ecological models forecasting future chlorophyll a at two time-steps (one-week and one-year forecasts), using recurrent neural networks tuned by genetic...
متن کاملthe effects of keyword and context methods on pronunciation and receptive/ productive vocabulary of low-intermediate iranian efl learners: short-term and long-term memory in focus
از گذشته تا کنون، تحقیقات بسیاری صورت گرفته است که همگی به گونه ای بر مثمر ثمر بودن استفاده از استراتژی های یادگیری لغت در یک زبان بیگانه اذعان داشته اند. این تحقیق به بررسی تاثیر دو روش مختلف آموزش واژگان انگلیسی (کلیدی و بافتی) بر تلفظ و دانش لغوی فراگیران ایرانی زیر متوسط زبان انگلیسی و بر ماندگاری آن در حافظه می پردازد. به این منظور، تعداد شصت نفر از زبان آموزان ایرانی هشت تا چهارده ساله با...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IFAC-PapersOnLine
سال: 2022
ISSN: ['2405-8963', '2405-8971']
DOI: https://doi.org/10.1016/j.ifacol.2022.11.015